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Abstract This paper is concerned with the parameter estimation of deterministic autoregressive

moving average (DARMA) systems with quantization data. The estimation algorithms adopted here

are the least squares (LS) and the forgetting factor LS, and the signal quantizer is of uniform, that

is, with uniform quantization error. The authors analyse the properties of the LS and the forgetting

factor LS, and establish the boundedness of the estimation errors and a relationship of the estimation

errors with the size of quantization error, which implies that the smaller the quantization error is, the

smaller the estimation error is. A numerical example is given to demonstrate theorems.

Keywords Discrete-time linear time-invariant systems, parameter estimation, quantized output.

1 Introduction

Owing to quantized data existing in numerous fields, system identification with quantized
data is of importance in understanding the modeling capacity of the systems with limited sensor
information[1]. For instance, in networked systems, transmitting quantized data instead of exact
data can improve the communication efficiency, and storing quantized data instead of exact data
can reduce the storage space. In fact, quantized data is inherent in many digital procedure,
since data is usually obtained from a communication channel. So, it is natural to study how to
get a desirable estimation of the system parameters by using quantized observations.

In the past two decades, identification with quantized data has become a hot topic and a
large number of literature (e.g. [1–10]) emerged. Among others, [1] provided two different pa-
rameter estimation frameworks, respectively, for deterministic systems and stochastic systems
with binary data. [2] gave the identification of regime-switching systems with binary data.
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[3] introduced a recursive projection algorithm for finite impulse response (FIR) systems and
showed the parameter estimation convergence rate. [4] gave an iterative parameter estimate
algorithm for systems with batched binary-valued observations based on the maximum likeli-
hood method. [5] developed a parameter estimation approach for multi-input and multi-output
FIR linear systems with quantized outputs. [6] proposed a parameter estimation method of
quantized deterministic autoregressive moving average (DARMA) systems, and analyzed the
boundedness of parameter estimation error. [7] used the method of [6] to distributed parameter
identification of quantized DARMA multi-agent systems. Compared with the above-mentioned
works, the purpose of this paper is to consider a general case with auto-regression part, weaken
the conditions on the regression vectors used in [6] and [11] by the LS method, analyse proper-
ties of the parameter estimation errors, and especially, establish a relationship of the estimation
errors with the size of quantization error.

Due to its simplicity and easy-to-use property, the LS method has played an important role
in parameter estimation and has widely used in practice[12]. A lot of research works (see [12–26])
are on the LS and its variations. Even for the forgetting factor LS, one can find many different
variations. For example, [21] designed the forgetting factor according with the current value of
the output prediction error. [22] introduced a directional forgetting variant for getting a better
exploitation of the incoming information. [23] applied the forgetting factor LS to tracking time-
varying linear regression models and analysed the relationship of the parameter tracking error
with the forgetting factor and the parameter time-varying speed.

Considering the wide use of quantized data and the LS method, it is of significance to
study the LS and the forgetting factor LS with quantized data. In this paper, the LS and the
forgetting factor LS of DARMA systems with uniform quantized data are researched. Through
the proceedings of proving, we can find that the properties of matrix P−1

n+1 =
∑n

i=0 ψiψ
T
i and

Q−1
n+1 = (1 − μ)Q−1

n + μψnψ
T
n are the key to getting the boundedness of parameter estimation

errors for both the LS and the forgetting factor LS. In fact, we adopt a classic technique to
design the system inputs so as to control the sizes of P−1

n and Q−1
n . An interesting phenomenon

is that the forgetting factor LS does not need any condition on the size of the quantization error,
while the LS does. One the contrary, in this paper we do not need the stability condition of
the auto-regression part to ensure the boundedness of the LS, but need for the forgetting factor
LS.

Quantization error is often state- and input-dependent, and not of white noises. Thus,
the properties of the parameter estimation with quantization error are more complex. Thanks
to the simple forms of the LS, we fortunately established the bounedness property of the LS
parameter estimation and the relationship of the bounedness with the quantization error size.

In this paper, for a given vector or matrix x, xT denotes the transpose of x; ||x|| denotes
the Euclidean norm for vector case and the corresponding induced norm for matrix case. The
rest of this paper is organized as follows. Section 2 describes the system model and the form
of uniform quantizer. Section 3 gives the LS for the quantized DARMA model, and researches
the influence of quantization error on the parameter estimation error. Section 4 gives forgetting
factor LS for the quantized DARMA model, and analyses the influence of quantization error on
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the parameter estimation error. Section 5 uses a numerical example to demonstrate the main
results. Section 6 presents some conclusion remarks.

2 Model

Consider the following DARMA system:

A(z)yn+1 = B(z)un, n ≥ 0, (1)

where yn and un are the output and input. For simplicity, we suppose yn = un = 0, ∀n < 0.

A(z) = 1 + a1z + a2z
2 + · · · + apz

p,

B(z) = b1 + b2z + · · · + bqz
q−1,

where ai and bj are to be estimated, z is the shift-back operator and the orders p, q are assumed
known.

The purpose of this paper is to estimate the following parameter vector by using system
inputs and quantized outputs.

θ = [−a1,−a2, · · · ,−ap, b1, b2, · · · , bq]T . (2)

For the convenience of proof, the model (1) can be rewritten as follows:

yn+1 = θTϕn, (3)

where

ϕn = [yn, · · · , yn−p+1, un, · · · , un−q+1]
T
. (4)

This paper considers the condition that the system output yn cannot be directly measured
and only its quantized value is known. We want to design parameter estimation algorithm and
analyze the influence of the quantization error on parameter estimation error.

For a given constant ε > 0, the quantizer used here is of the following uniform form:

sn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

...

− ε, yn ∈
[

−3ε
2
,−ε

2

)

,

0, yn ∈
[
−ε

2
,
ε

2

)
,

ε, yn ∈
[
ε

2
,
3ε
2

)

,

...

(5)

From (5) we know that

sn+1 = θTψn + εn+1, (6)
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where

ψn = [sn, · · · , sn−p+1, un, · · · , un−q+1]
T
. (7)

It can be proved that

|εn+1| ≤ ε

2
(|a1| + |a2| + · · · + |ap| + 1) . (8)

3 Parameter Estimation with the LS

Before going further, we first list the main conditions to be used in their paper.

Assumption 1 A(z) and B(z) are coprime, ap �= 0.

For any x ∈ Rp+q, ||x|| = 1. Define x = [x1, x2, · · · , xp+q]
T and

Hx(z) = x1B(z)z + · · · + xpB(z)zp + xp+1A(z) + · · · + xp+qz
q−1A(z) =

p+q−1∑

i=0

gi(x)zi

and

Lx(z) =
p∑

i=1

xiz
i−1

and

g(x) = [g0(x), g1(x), · · · , gp+q−1(x)]
T
.

Then, by Assumption 1 and Lemma 1 of [11] we know that

min
||x||=1

||g(x)||2 > 0.

Assumption 2 There exists a constant γ > 0 such that |ui| ≤ γ and

λmin

(
N∑

i=k+1

UiU
T
i

)

≥ δ, ∀k ≥ 0, N = k + p+ q,

where

Ui = [ui, ui−1, · · · , ui−p−q+1]
T
, (9)

δ is a positive constant.

Lemma 1 If Assumption 2 is satisfied, then there exists a constant c0 > 0 such that
|(Hx(z)ui) (Lx(z)εi)| ≤ (p+q)c0ε

3(p+q+1) , for any x ∈ Rp+q, ||x|| = 1.

Proof Since ||x|| = 1, the coefficients of Hx(z) and Lx(z) are bounded. From (8) we know
that |εi| is bounded. By Assumption 2, |ui| is bounded. So, there exists a constant c0 > 0 such
that |(Hx(z)ui) (Lx(z)εi)| ≤ (p+q)c0ε

3(p+q+1) .
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Lemma 2 If Assumptions 1–2 are satisfied for δ = (p+q)c0ε

min||x||=1||g(x)||2 , then there is a con-
stant ζ > 0 such that when n ≥ (p+ q) (p+ q + 1),

λmin

(
n∑

i=0

ψiψ
T
i

)

≥ ζn. (10)

Proof From Assumption 2 we know that

λmin

(
n∑

i=1

UiU
T
i

)

≥ n− (p+ q)
p+ q

δ ≥ δ

p+ q + 1
n, ∀n ≥ (p+ q) (p+ q + 1) . (11)

Let

φn = A(z)ψn. (12)

Then

φn =
[
(zB(z)un + εn) , · · · , (zpB(z)un + εn−p+1) , A(z)un, · · · , zq−1A(z)un

]T
. (13)

From (12), for any x ∈ Rp+q, ||x|| = 1, we have

xT

(
n∑

i=0

φiφ
T
i

)

x =
n∑

i=0

(
xTφi

)2
=

n∑

i=0

⎛

⎝
p∑

j=0

ajx
Tψi−j

⎞

⎠

2

≤
p∑

j=0

a2
j

n∑

i=0

p∑

j=0

(
xTψi−j

)2

≤(p+ 1)
p∑

j=0

a2
j

(

xT
n∑

i=0

ψiψ
T
i x

)

, (14)

where a0 = 1. So,

λmin

(
n∑

i=0

ψiψ
T
i

)

≥ 1
(p+ 1)

∑p
j=0 a

2
j

λmin

(
n∑

i=0

φiφ
T
i

)

.

Therefore, from Lemma 1 and (11) it follows that

xT
n∑

i=1

φiφ
T
i x =

n∑

i=1

(Hx(z)ui + Lx(z)εi)
2

=gT(x)
n∑

i=1

UiU
T
i g(x) + 2

n∑

i=1

(Hx(z)ui) (Lx(z)εi) +
n∑

i=1

(Lx(z)εi)
2

≥ min
||x||=1

||g(x)||2 λmin

(
n∑

i=1

UiU
T
i

)

+ 2
n∑

i=1

(Hx(z)ui) (Lx(z)εi)

≥ min
||x||=1

||g(x)||2 λmin

(
n∑

i=1

UiU
T
i

)

− 2 (p+ q) c0ε
3 (p+ q + 1)

n
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= min
||x||=1

||g(x)||2
(

λmin

(
n∑

i=1

UiU
T
i

)

− 2δ
3 (p+ q + 1)

n

)

≥1
3

min
||x||=1

||g(x)||2 λmin

(
n∑

i=1

UiU
T
i

)

,

which implies

λmin

(
n∑

i=0

φiφ
T
i

)

≥ 1
3

min
||x||=1

||g(x)||2 δ

p+ q + 1
n =

(p+ q) c0ε
3 (p+ q + 1)

n.

Let ζ = (p+q)c0ε
3(p+q+1)(p+1)

∑p
j=0 a2

j
. This completes the proof.

For θ, we use the following estimation algorithm:

θn+1 =

(
n∑

i=0

ψiψ
T
i

)−1 n∑

i=0

ψisi+1 = Pn+1

n∑

i=0

ψisi+1, (15)

where

Pn+1 =

(

P−1
0 +

n∑

i=0

ψiψ
T
i

)−1

=
(
P−1

n + ψnψ
T
n

)−1
= Pn − anPnψnψ

T
nPn, (16)

an =
(
1 + ψT

nPnψn

)−1
. (17)

From (15)–(17) it follows that

θn+1 =
(
Pn − anPnψnψ

T
nPn

)
(

n−1∑

i=0

ψisi+1 + ψnsn+1

)

=θn − anPnψnψ
T
n θn + Pnψnsn+1 − anPnψnψ

T
nPnψnsn+1

=θn − anPnψnψ
T
n θn + Pnψn

(
1 − anψ

T
nPnψn

)
sn+1

=θn − anPnψnψ
T
n θn + anPnψnsn+1

=θn + anPnψn

(
sn+1 − ψT

n θn

)
. (18)

Thus, we have obtained the recursive algorithm for the LS estimation.
We set

P0 = I, (19)

and take θ0 arbitrarily.
Denote by λmin(n) the smallest eigenvalue of P−1

n+1.

Theorem 3 For (6), suppose Assumptions 1–2 hold for δ = (p+q)c0ε

min||x||=1||g(x)||2 . Then, for

all 0 < ε < 1

2(1+∑p
i=1|ai|) , when n ≥ (p+ q) (p+ q + 1), we have

∣
∣
∣
∣
∣
∣θ̃n+1

∣
∣
∣
∣
∣
∣ ≤c1

(√
1 + ε

n
+ ε

)

, (20)
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where

θ̃n = θ − θn, (21)

c1 is a constant and independent of n and ε.

Proof Noticing P−1
n+1 ≥ λmin(n)I, we see that

∣
∣
∣
∣
∣
∣θ̃n+1

∣
∣
∣
∣
∣
∣
2

≤ 1
λmin(n)

θ̃Tn+1P
−1
n+1θ̃n+1. (22)

Firstly, we need to prove there exist constants c2, c3 independent of n and ε such that

θ̃Tn+1P
−1
n+1θ̃n+1 ≤ c2 + c3ε (n+ 1) . (23)

From (17)–(18) it can be seen that

sn+1 − ψT
n θn+1 =sn+1 − ψT

n

(
θn + anPnψn

(
sn+1 − ψT

n θn

))

=
(
1 − anψ

T
nPnψn

) (
sn+1 − ψT

n θn

)

=an

(
sn+1 − ψT

n θn

)
. (24)

Hence, by (6), (21) and (24), we can rewrite (18) as

θ̃n+1 =θ̃n − anPnψn

(
sn+1 − ψT

n θn

)

=θ̃n − Pnψn

(
sn+1 − ψT

n θn+1

)

=θ̃n − Pnψn

(
θ̃Tn+1ψn + εn+1

)
. (25)

We expand θ̃Tk+1P
−1
k+1θ̃k+1 by using (16) and (25),

θ̃Tk+1P
−1
k+1θ̃k+1

=θ̃Tk+1

(
P−1

k + ψkψ
T
k

)
θ̃k+1

=
[
θ̃k − Pkψk

(
θ̃Tk+1ψk + εk+1

)]T
P−1

k

[
θ̃k − Pkψk

(
θ̃Tk+1ψk + εk+1

)]
+
(
θ̃Tk+1ψk

)2

=
(
θ̃Tk+1ψk

)2

− 2
(
θ̃Tk+1ψk + εk+1

)
θ̃Tk ψk + ψT

k Pkψk

(
θ̃Tk+1ψk + εk+1

)2

+ θ̃Tk P
−1
k θ̃k

=θ̃Tk P
−1
k θ̃k − 2

(
θ̃Tk+1ψk + εk+1

) [
θ̃k+1 + Pkψk

(
θ̃Tk+1ψk + εk+1

)]T
ψk

+ ψT
k Pkψk

(
θ̃Tk+1ψk + εk+1

)2

+
(
θ̃Tk+1ψk

)2

=θ̃Tk P
−1
k θ̃k +

(
θ̃Tk+1ψk

)2

− ψT
k Pkψk

(
θ̃Tk+1ψk + εk+1

)2

− 2
(
θ̃Tk+1ψk + εk+1

)(
θ̃Tk+1ψk

)

≤θ̃Tk P−1
k θ̃k −

(
θ̃Tk+1ψk

)2

− 2εk+1θ̃
T
k+1ψk. (26)

Summing up both sides of (26) from 0 to n and letting c2 = θ̃T0 P
−1
0 θ̃0, we get

θ̃Tn+1P
−1
n+1θ̃n+1 ≤θ̃T0 P−1

0 θ̃0 −
n∑

i=0

(
θ̃Ti+1ψi

)2

− 2
n∑

i=0

εi+1θ̃
T
i+1ψi

=c2 −
n∑

i=0

(
θ̃Ti+1ψi

)2

− 2
n∑

i=0

εi+1θ̃
T
i+1ψi, (27)
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or equivalently,

θ̃Tn+1P
−1
n+1θ̃n+1 +

n∑

i=0

(
θ̃Ti+1ψi

)2

≤ c2 +

∣
∣
∣
∣
∣
2

n∑

i=0

εi+1θ̃
T
i+1ψi

∣
∣
∣
∣
∣
. (28)

From (8) and 0 < ε < 1

2(1+∑p
i=1|ai|) , we have

∣
∣
∣
∣
∣
2

n∑

i=0

εi+1θ̃
T
i+1ψi

∣
∣
∣
∣
∣
≤2

n∑

i=0

|εi+1|
∣
∣
∣θ̃Ti+1ψi

∣
∣
∣

≤ε
(

1 +
p∑

i=1

|ai|
)

n∑

i=0

∣
∣
∣θ̃Ti+1ψi

∣
∣
∣

≤ε
(

1 +
p∑

i=1

|ai|
)

n∑

i=0

(∣
∣
∣θ̃Ti+1ψi

∣
∣
∣
2

+ 1
)

=ε

(

1 +
p∑

i=1

|ai|
)

n∑

i=0

∣
∣
∣θ̃Ti+1ψi

∣
∣
∣
2

+

(

1 +
p∑

i=1

|ai|
)

ε (n+ 1)

<
1
2

n∑

i=0

∣
∣
∣θ̃Ti+1ψi

∣
∣
∣
2

+

(

1 +
p∑

i=1

|ai|
)

ε (n+ 1) . (29)

From (28)–(29) we know that there is a constant c3 independent of n and ε such that

θ̃Tn+1P
−1
n+1θ̃n+1 +

n∑

i=0

(
θ̃Ti+1ψi

)2

≤c2 +
1
2

n∑

i=0

∣
∣
∣θ̃Ti+1ψi

∣
∣
∣
2

+

(

1 +
p∑

i=1

|ai|
)

ε (n+ 1)

≤c2 +
1
2

n∑

i=0

∣
∣
∣θ̃Ti+1ψi

∣
∣
∣
2

+ c3ε (n+ 1) . (30)

Thus, we have

θ̃Tn+1P
−1
n+1θ̃n+1 ≤ θ̃Tn+1P

−1
n+1θ̃n+1 +

1
2

n∑

i=0

(
θ̃Ti+1ψi

)2

≤ c2 + c3ε (n+ 1) . (31)

So, (23) is proved.
From Lemma 2, (22) and (31), it can be seen that

∣
∣
∣
∣
∣
∣θ̃n+1

∣
∣
∣
∣
∣
∣
2

≤ 1
λmin(n)

θ̃Tn+1P
−1
n+1θ̃n+1 ≤c2 + c3ε (n+ 1)

ζn

=c4
1
n

+ c5ε+ c5
ε

n
≤ c6

(
1 + ε

n
+ ε

)

, (32)

where c4 = c2
ζ , c5 = c3

ζ , c6 = max {c4, c5}. So,

∣
∣
∣
∣
∣
∣θ̃n+1

∣
∣
∣
∣
∣
∣ ≤√

c6

(√
1 + ε

n
+ ε

)

. (33)

This completes the proof.
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Remark 1 When the boundedness of |ai| is known, a suitable ε can easily be chosen. It
is worth pointing out that 0 < ε < 1

2(1+∑p
i=1|ai|) is only a sufficient condition, which means that

for some ε ≥ 1

2(1+∑p
i=1|ai|) ,

∣
∣
∣
∣
∣
∣θ̃n

∣
∣
∣
∣
∣
∣ may also be bounded. This can be seen from the numerical

example in Section 5.

Remark 2 Here we would like to emphasize that the proofs of Lemma 2 and Theorem3
are very similar to that of the classic paper [11] where a series of novel and subtle analysis skills
were firstly introduced.

4 Parameter Estimation with Forgetting Factor LS

In addition to Assumptions 1–2, in this section we will need the following assumption.

Assumption 3 A(z) is stable, i.e., A(z) �= 0, ∀ |z| ≤ 1.

Then, we have the following result.

Lemma 4 (see [6]) If Assumptions 1–2 are satisfied for δ = (p+q)c0ε

min||x||=1||g(x)||2 , then there
exist an integer h > 0 and a constant c7 > 0 such that

λmin (Φh(t)) > c7, (34)

where

Φh(t) =
t+h∑

i=t+1

ψi−1ψ
T
i−1, t ≥ 0. (35)

For θ, we use the following estimation algorithm:

θn = θn−1 + μQnψn−1

(
sn − ψT

n−1θn−1

)
, μ ∈ (0, 1), (36)

where

Qn =
1

1 − μ

(

Qn−1 − μ
Qn−1ψn−1ψ

T
n−1Qn−1

1 − μ+ μψT
n−1Qn−1ψn−1

)

, (37)

with deterministic initial conditions θ0 and Q0 > 0.
Let

Rn � Q−1
n . (38)

Then, from (37) and the matrix inversion formula, we have

Rn = (1 − μ)Rn−1 + μψn−1ψ
T
n−1. (39)

Lemma 5 If Assumptions 1–2 are satisfied for δ = (p+q)c0ε

min||x||=1||g(x)||2 , then there is a con-
stant c8 > 0 such that for any μ0 ∈ (0, 1),

sup
μ∈(0,μ0]

||Qn|| ≤ c8. (40)
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Proof By (39) we need only to prove the boundedness of the subsequence ||Qhk||, k ≥ 1.
By (39) we have

Rkh+h = (1 − μ)h
Rkh + μ

kh+h∑

i=kh+1

(1 − μ)kh+h−i
ψi−1ψ

T
i−1. (41)

Hence, by (35) we have

λmin (Rkh+h) ≥ (1 − μ)h
λmin (Rkh) + μ (1 − μ)h

λmin (Φh(kh)) , (42)

or

αk+1 ≥ λh (αk + μβk+1) , λ = 1 − μ, k ≥ 0, (43)

where αk � λmin (Rkh) and βk+1 � λmin (Φh(kh)).
By (43) and the Schwarz inequality, we have

αk ≥μλh

(
k∑

i=1

(λh)k−iβi

)

≥ μλh

(
k∑

i=1

(λh)k−i

)2( k∑

i=1

(λh)k−iβ−1
i

)−1

. (44)

By Lemma 4, there is a constant K > 0 such that

k∑

i=1

(
λh
)k−i

β−1
i ≤ K. (45)

So, we have

α−1
k ≤Kμ−1λ−h

(
k∑

i=1

(
λh
)k−i

)−2

≤Kμ−1λ−h

(
k∑

i=1

(
λh
)k−i

)−1

=Kμ−1λ−h 1 − λh

1 − λkh

≤Kh (1 − μ0)
−h 1

1 − λkh
, μ ∈ (0, μ0], (46)

where we have used the inequality used in [23],

μ−1
(
1 − λh

) ≤ h, μ ∈ (0, 1).

Notice that (1 − μ)
1
µ , μ ∈ (0, 1) is a decreasing function of μ and that

lim
μ→0

(1 − μ)
1
µ = e−1. (47)
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Then, we have

sup
k≥μ−1

α−1
k ≤ Kh (1 − μ0)

−h 1

1 − (1 − μ)h/μ
≤ Kh (1 − μ0)

−h 1
1 − e−h

. (48)

On the other hand, by (43) we have

α−1
k ≤ λ−hkα−1

0 , (49)

and hence, for μ ∈ (0, μ0],

sup
k≤μ−1

α−1
k ≤ (1 − μ)−h/μ

α−1
0 ≤ (1 − μ0)

−h/μ0 α−1
0 , (50)

where we have used the inequality

(1 − μ)−1/μ ≤ (1 − μ0)
−1/μ0 , μ ≤ μ0.

Let

c8 = min

{
Kh (1 − μ0)

−h

1 − e−h
, (1 − μ0)

−h/μ0 α−1
0

}

. (51)

This completes the proof.

Theorem 6 For (6), if Assumptions 1–3 are satisfied for δ = (p+q)c0ε

min||x||=1||g(x)||2 , then under
the estimation algorithm (36)–(37), we have

∣
∣
∣
∣
∣
∣θ̃n

∣
∣
∣
∣
∣
∣ ≤ c9 ((1 − μ)n + ε) , (52)

where

θ̃n = θ − θn, (53)

c9 is a constant and independent of n and ε.

Proof From (6) and (36) it follows that

θ̃n =θ̃n−1 − μQnψn−1

(
sn − ψT

n−1θn−1

)

=θ̃n−1 − μQnψn−1

(
ψT

n−1θ + εn − ψT
n−1θn−1

)

=θ̃n−1 − μQnψn−1

(
ψT

n−1θ̃n−1 + εn

)

=
[
I − μQnψn−1ψ

T
n−1

]
θ̃n−1 − μQnψn−1εn, (54)

which together with (39) implies

Rnθ̃n =Rn

[
I − μQnψn−1ψ

T
n−1

]
θ̃n−1 − μψn−1εn

=
[
Rn − μψn−1ψ

T
n−1

]
θ̃n−1 − μψn−1εn

=(1 − μ)Rn−1θ̃n−1 − μψn−1εn, (55)
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or

Rnθ̃n = (1 − μ)n
R0θ̃0 −

n∑

i=1

(1 − μ)n−i
μψi−1εi. (56)

By Assumptions 2–3, one can see that ||ψi|| is bounded. Furthermore, by (56), there exist
constants c10, c11 independent of n and ε such that

∣
∣
∣
∣
∣
∣Rnθ̃n

∣
∣
∣
∣
∣
∣ ≤

∣
∣
∣
∣
∣
∣(1 − μ)n

R0θ̃0

∣
∣
∣
∣
∣
∣+

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n∑

i=1

(1 − μ)n−i
μψi−1εi

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
= c10 (1 − μ)n + c11ε. (57)

Therefore, it follows from Lemma 5 that
∣
∣
∣
∣
∣
∣θ̃n

∣
∣
∣
∣
∣
∣ =

∣
∣
∣
∣
∣
∣QnRnθ̃n

∣
∣
∣
∣
∣
∣ ≤ ||Qn||

∣
∣
∣
∣
∣
∣Rnθ̃n

∣
∣
∣
∣
∣
∣

≤c8
∣
∣
∣
∣
∣
∣Rnθ̃n

∣
∣
∣
∣
∣
∣

≤c8c10 (1 − μ)n + c8c11ε

≤c9 ((1 − μ)n + ε) , (58)

where c9 = max {c8c10, c8c11}. This completes the proof.

Remark 3 Compared with [6], we can find that the parameter estimation errors of pro-
jection algorithm, the LS and the forgetting factor LS are dependent on quantization error.
This is natural, because the size of quantization error reflects the accuracy of quantization.
The smaller the quantization error is, or the higher the accuracy is, the smaller the estimation
error is.

Remark 4 There are some limits of the applicability of the LS and the forgetting factor
LS, which are mainly in how to choose suitable quantizers and system inputs. From the proof of
Theorem 3 we know that the quantization error should be pretty small so as to get a satisfactory
estimation error. For the choice of system inputs, ui can be designed as periodic so as to make
Assumption 2 satisfied.

5 Numerical Example

In this section, we will illustrate our theoretical result with a simulation example.
Consider the following system: yn = ayn−1 + bun−1, where θ = [a, b]T = [0.5, 1]T is the

parameter to be estimated, θ0 = [0, 0]T. By the condition of Theorem 3, ε should satisfy 0 <
ε < 1

2(1+∑p
i=1|ai|) = 1

3 . In order to clarify Remark 1, let yn be quantized by (5) under ε = 0.1,

ε = 0.3 and ε = 1, respectively. un = 1,−1,−3, 1,−1,−3, · · · , which satisfies Assumption 2.
We estimate θ by (15) and (36). The simulation results are given by Figures 1–12.
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Figure 2 The trajectories of a and b with ε = 0.1 by the LS
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Figure 3 The trajectory of
∣
∣
∣
∣
∣
∣θ̃n

∣
∣
∣
∣
∣
∣ with ε = 0.3 by the LS
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Figure 4 The trajectories of a and b with ε = 0.3 by the LS
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Figure 5 The trajectory of
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Figure 6 The trajectories of a and b with ε = 1 by the LS
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Figure 7 The trajectory of
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Figure 8 The trajectories of a and b with ε = 0.1 by forgetting factor LS
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Figure 9 The trajectory of
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∣ with ε = 0.3 by forgetting factor LS
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Figure 10 The trajectories of a and b with ε = 0.3 by forgetting factor LS
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Figure 11 The trajectory of
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Figure 12 The trajectories of a and b with ε = 1 by forgetting factor LS

From Figures 1–12 it can be seen that the parameter estimation error is bounded and
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dependent on the size of quantization error for both the LS and forgetting factor LS. The
smaller the quantization error is, the smaller the estimation error is.

6 Conclusion

This paper considers the parameter estimation problem of DARMA systems by using uni-
form quantized data. The LS and the forgetting factor LS are introduced to estimate system
parameters. Under some conditions, we show that the estimation errors are bounded and de-
pendent on the size of the quantization error. Here we only consider the case without system
noises. For the systems with stochastic noise case, we guess the LS algorithm can still be appli-
cable, but the analysis would be much more complex and difficult. As for further research, the
adaptive control of quantized linear systems is worth investigation, which may need to relax
the conditions of this paper or take a new way to study.
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